Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339145

RESUMO

Patellar tendinopathy is a common clinical problem, but its underlying pathophysiology remains poorly understood, primarily due to the absence of a representative experimental model. The most widely used method to generate such a model is collagenase injection, although this method possesses limitations. We developed an optimized rat model of patellar tendinopathy via the ultrasound-guided injection of collagenase mixed with a thermo-responsive Pluronic hydrogel into the patellar tendon of sixty male Wistar rats. All analyses were carried out at 3, 7, 14, 30, and 60 days post-injury. We confirmed that our rat model reproduced the pathophysiology observed in human patients through analyses of ultrasonography, histology, immunofluorescence, and biomechanical parameters. Tendons that were injured by the injection of the collagenase-Pluronic mixture exhibited a significant increase in the cross-sectional area (p < 0.01), a high degree of tissue disorganization and hypercellularity, significantly strong neovascularization (p < 0.01), important changes in the levels of types I and III collagen expression, and the organization and presence of intra-tendinous calcifications. Decreases in the maximum rupture force and stiffness were also observed. These results demonstrate that our model replicates the key features observed in human patellar tendinopathy. Collagenase is evenly distributed, as the Pluronic hydrogel prevents its leakage and thus, damage to surrounding tissues. Therefore, this model is valuable for testing new treatments for patellar tendinopathy.


Assuntos
Ligamento Patelar , Tendinopatia , Traumatismos dos Tendões , Humanos , Ratos , Masculino , Animais , Hidrogéis/efeitos adversos , Poloxâmero , Modelos Animais de Doenças , Ratos Wistar , Traumatismos dos Tendões/patologia , Tendinopatia/tratamento farmacológico , Tendinopatia/etiologia , Tendinopatia/metabolismo , Ligamento Patelar/diagnóstico por imagem , Ligamento Patelar/lesões , Ligamento Patelar/metabolismo , Colagenases/farmacologia
2.
J Biol Chem ; 300(1): 105510, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042492

RESUMO

Tendinopathy is a disorder of musculoskeletal system that primarily affects athletes and the elderly. Current treatment options are generally comprised of various exercise and loading programs, therapeutic modalities, and surgical interventions and are limited to pain management. This study is to understand the role of TRIM54 (tripartite motif containing 54) in tendonitis through in vitro modeling with tendon-derived stem cells (TDSCs) and in vivo using rat tendon injury model. Initially, we observed that TRIM54 overexpression in TDSCs model increased stemness and decreased apoptosis. Additionally, it rescued cells from tumor necrosis factor α-induced inflammation, migration, and tenogenic differentiation. Further, through immunoprecipitation studies, we identified that TRIM54 regulates inflammation in TDSCs by binding to and ubiquitinating YOD1. Further, overexpression of TRIM54 improved the histopathological score of tendon injury as well as the failure load, stiffness, and young modulus in vivo. These results indicated that TRIM54 played a critical role in reducing the effects of tendon injury. Consequently, these results shed light on potential therapeutic alternatives for treating tendinopathy.


Assuntos
Endopeptidases , Proteínas Musculares , Tendinopatia , Tioléster Hidrolases , Idoso , Animais , Humanos , Ratos , Apoptose , Diferenciação Celular/fisiologia , Endopeptidases/metabolismo , Células-Tronco , Tendinopatia/metabolismo , Traumatismos dos Tendões/terapia , Traumatismos dos Tendões/metabolismo , Tendões/metabolismo , Tioléster Hidrolases/metabolismo , Proteínas Musculares/metabolismo
3.
Tissue Cell ; 86: 102275, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979397

RESUMO

The prevalence of tendinopathy in patients with diabetes is well documented. Despite efforts to improve diabetes management, there is a lack of research on therapeutic agents targeting the core features of tendinopathy, namely, tenocyte apoptosis and extracellular matrix (ECM) damage. In this study, we investigated the potential of ginsenoside compound K (CK), known for its antidiabetic properties, to mitigate tenocyte apoptosis, inflammation, oxidative stress, and the metalloproteinase (MMP) system under hyperglycemic conditions. Our research also aimed to unravel the molecular mechanism underlying the effects of CK. The assessment of apoptosis involved observing intracellular chromatin condensation and measuring caspase 3 activity. To gauge oxidative stress, we examined cellular ROS levels and hydrogen peroxide and malondialdehyde concentrations. Western blotting was employed to determine the expression of various proteins. Our findings indicate that CK treatment effectively countered high glucose-induced apoptosis, inflammation, and oxidative stress in cultured tenocytes. Furthermore, CK normalized the expression of MMP-9, MMP-13, and TIMP-1. Notably, CK treatment boosted the expression of PPARγ and antioxidant enzymes. We conducted small interfering (si) RNA experiments targeting PPARγ, revealing its role in mediating CK's effects on tendinopathy features in hyperglycemic tenocytes. In conclusion, these in vitro results offer valuable insights into the potential therapeutic role of CK in managing tendinopathy among individuals with diabetes. By addressing crucial aspects of tendinopathy, CK presents itself as a promising avenue for future research and treatment development in this domain.


Assuntos
Diabetes Mellitus , Ginsenosídeos , Tendinopatia , Humanos , Tenócitos/metabolismo , PPAR gama/metabolismo , PPAR gama/farmacologia , PPAR gama/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Matriz Extracelular/metabolismo , Apoptose , Tendinopatia/tratamento farmacológico , Tendinopatia/metabolismo , Inflamação/metabolismo
4.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069418

RESUMO

Because equine tendinopathies are slow to heal and often recur, therapeutic strategies are being considered that aid tendon repair. Given the success of utilizing vitamin C to promote tenogenesis in other species, we hypothesized that vitamin C supplementation would produce dose-dependent improvements in the tenogenic properties of tendon proper (TP) and peritenon (PERI) cells of the equine superficial digital flexor tendon (SDFT). Equine TP- and PERI-progenitor-cell-seeded fibrin three-dimensional constructs were supplemented with four concentrations of vitamin C. The gene expression profiles of the constructs were assessed with 3'-Tag-Seq and real-time quantitative polymerase chain reaction (RT-qPCR); collagen content and fibril ultrastructure were also analyzed. Moreover, cells were challenged with dexamethasone to determine the levels of cytoprotection afforded by vitamin C. Expression profiling demonstrated that vitamin C had an anti-inflammatory effect on TP and PERI cell constructs. Moreover, vitamin C supplementation mitigated the degenerative pathways seen in tendinopathy and increased collagen content in tendon constructs. When challenged with dexamethasone in two-dimensional culture, vitamin C had a cytoprotective effect for TP cells but not necessarily for PERI cells. Future studies will explore the effects of vitamin C on these cells during inflammation and within the tendon niche in vivo.


Assuntos
Tendinopatia , Tendões , Animais , Cavalos , Tendões/metabolismo , Colágeno/metabolismo , Engenharia Tecidual/métodos , Tendinopatia/tratamento farmacológico , Tendinopatia/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Dexametasona/farmacologia , Dexametasona/metabolismo
5.
J Nanobiotechnology ; 21(1): 177, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37268942

RESUMO

Long-term chronic inflammation after Achilles tendon injury is critical for tendinopathy. Platelet-rich plasma (PRP) injection, which is a common method for treating tendinopathy, has positive effects on tendon repair. In addition, tendon-derived stem cells (TDSCs), which are stem cells located in tendons, play a major role in maintaining tissue homeostasis and postinjury repair. In this study, injectable gelatine methacryloyl (GelMA) microparticles containing PRP laden with TDSCs (PRP-TDSC-GM) were prepared by a projection-based 3D bioprinting technique. Our results showed that PRP-TDSC-GM could promote tendon differentiation in TDSCs and reduce the inflammatory response by downregulating the PI3K-AKT pathway, thus promoting the structural and functional repair of tendons in vivo.


Assuntos
Plasma Rico em Plaquetas , Tendinopatia , Ratos , Animais , Hidrogéis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Tendões , Tendinopatia/terapia , Tendinopatia/metabolismo , Células-Tronco , Plasma Rico em Plaquetas/metabolismo , Impressão Tridimensional
6.
J Orthop Res ; 41(10): 2195-2204, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37132159

RESUMO

Tendinopathy is one of the most common musculoskeletal disorders with significant repercussions on quality of life and sport activities. Physical exercise (PE) is considered the first-line approach to treat tendinopathy due renowned mechanobiological effects on tenocytes. Irisin, a recently identified myokine released during PE, has been recognized for several beneficial effects towards muscle, cartilage, bone, and intervertebral disc tissues. The aim of this study was to evaluate the effects of irisin on human primary tenocytes (hTCs) in vitro. Human tendons were harvested from specimens of patients undergoing anterior cruciate ligament reconstruction (n = 4). After isolation and expansion, hTCs were treated with RPMI medium (negative control), interleukin (IL)-1ß or tumor necrosis factor-α (TNF-α) (positive controls; 10 ng/mL), irisin (5, 10, 25 ng/mL), IL-1ß or TNF-α pretreatment and subsequent co-treatment with irisin, pretreatment with irisin and subsequent co-treatment with IL-1ß or TNF-α. hTC metabolic activity, proliferation, and nitrite production were evaluated. Detection of unphosphorylated and phosphorylated p38 and ERK was performed. Tissue samples were analyzed by histology and immunohistochemistry to evaluate irisin αVß5 receptor expression. Irisin significantly increased hTC proliferation and metabolic activity, while reducing the production of nitrites both before and after the addition of IL-1ß and TNF-α. Interestingly, irisin reduced p-p38 and pERK levels in inflamed hTCs. The αVß5 receptor was uniformly expressed on hTC plasma membranes, supporting the potential binding of irisin. This is the first study reporting the capacity of irisin to target hTCs and modulating their response to inflammatory stresses, possibly orchestrating a biological crosstalk between the muscle and tendon.


Assuntos
Fibronectinas , Tendinopatia , Humanos , Fibronectinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tenócitos/metabolismo , Qualidade de Vida , Tendões/patologia , Inflamação/metabolismo , Tendinopatia/metabolismo , Músculos/patologia
7.
J Proteome Res ; 22(6): 1712-1722, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37159428

RESUMO

Tendinopathy is a disease with surging prevalence. Lacking understanding of molecular mechanisms impedes the development of therapeutic approaches and agents. Lysine lactylation (Kla) is a newly discovered post-translational modification related to glycolysis. It has long been noted that manipulation of glycolysis metabolism could affect tendon cell function, tendon homeostasis, and healing process of tendon. However, protein lactylation sites in tendinopathy remain unexplored. Here, we conducted the first proteome-wide Kla analysis in tendon samples harvested from patients with rotator cuff tendinopathy (RCT), which identified 872 Kla sites across 284 proteins. Compared with normal counterparts, 136 Kla sites on 77 proteins were identified as upregulated in the pathological tendon, while 56 sites on 32 proteins were downregulated. Function enrichment analysis demonstrated that the majority of proteins with upregulated Kla levels functioned in organization of the tendon matrix and cholesterol metabolism, accompanied by lower expression levels which meant impaired cholesterol metabolism and degeneration of the tendon matrix, indicating potential cross-talk between protein lactylation and expression levels. At last, by western blotting and immunofluorescence, we verified the correlation between high lactylation and the downregulation of matrix and cholesterol-related proteins including BGN, MYL3, TPM3, and APOC3. ProteomeXchange: PXD033146.


Assuntos
Manguito Rotador , Tendinopatia , Humanos , Manguito Rotador/metabolismo , Manguito Rotador/patologia , Proteínas/metabolismo , Tendões/metabolismo , Tendões/patologia , Lisina/metabolismo , Tendinopatia/genética , Tendinopatia/metabolismo , Tendinopatia/patologia
8.
Genes (Basel) ; 14(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36833423

RESUMO

The development and progression of rotator cuff tendinopathy (RCT) is multifactorial and likely to manifest through a combination of extrinsic, intrinsic, and environmental factors, including genetics and epigenetics. However, the role of epigenetics in RCT, including the role of histone modification, is not well established. Using chromatin immunoprecipitation sequencing, differences in the trimethylation status of H3K4 and H3K27 histones in late-stage RCT compared to control were investigated in this study. For H3K4, 24 genomic loci were found to be significantly more trimethylated in RCT compared to control (p < 0.05), implicating genes such as DKK2, JAG2, and SMOC2 in RCT. For H3K27, 31 loci were shown to be more trimethylated (p < 0.05) in RCT compared to control, inferring a role for EPHA3, ROCK1, and DEFß115. Furthermore, 14 loci were significantly less trimethylated (p < 0.05) in control compared to RCT, implicating EFNA5, GDF6, and GDF7. Finally, the TGFß signaling, axon guidance, and regulation of focal adhesion assembly pathways were found to be enriched in RCT. These findings suggest that the development and progression of RCT is, at least in part, under epigenetic control, highlighting the influence of histone modifications in this disorder and paving the way to further understand the role of epigenome in RCT.


Assuntos
Doenças Musculoesqueléticas , Tendinopatia , Humanos , Manguito Rotador/metabolismo , Código das Histonas , Histonas/metabolismo , Tendinopatia/metabolismo , Processamento de Proteína Pós-Traducional , Doenças Musculoesqueléticas/metabolismo , Quinases Associadas a rho/metabolismo
9.
J Orthop Res ; 41(2): 290-299, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35535383

RESUMO

The erroneous differentiation of tendon-derived stem cells (TDSCs) into adipocytes, chondrocytes, and osteoblasts is believed to play an important role in the development of tendinopathy. However, the regulatory mechanisms of TDSC differentiation remain unclear. The aim of this study is to investigate the contribution and mechanism of the tendon microstructural disruption to the differentiation of TDSCs. Bovine Achilles tendons were sliced. The tendon slices were stretched with different tensile strains to mimic the tendon structure alteration at various scales. The TDSCs were cultured on the tendon slices. The differentiation of TDSCs and endoplasmic reticulum (ER) stress in the TDSCs were investigated with quantitative reverse transcription polymerase chain reaction, immunostaining and western blot. The effect of ER stress inhibition on chondrogenic differentiation of the TDSCs was further investigated. The structural alteration did not affect the viability of TDSCs. However, the structural alteration of tendon slices with 6.4% strain promoted TDSCs to express the chondrogenic genes. ER stress-related markers, ATF-4 and PERK, were also upregulated. With the inhibition of ER stress, the expression of ATF-4 and the chondrogenic gene SOX9 of TDSCs were inhibited. The study indicated that tendon microdamage could induce the chondrogenic differentiation of TDSCs through triggering ER stress to activate ATF-4 and SOX9 subsequently.


Assuntos
Tendinopatia , Tendões , Ratos , Animais , Bovinos , Ratos Sprague-Dawley , Diferenciação Celular , Células-Tronco , Tendinopatia/metabolismo
10.
Cell Tissue Res ; 391(3): 523-544, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36543895

RESUMO

Tendon injuries occur commonly in both human and equine athletes, and poor tendon regeneration leads to functionally deficient scar tissue and an increased frequency of re-injury. Despite evidence suggesting inadequate resolution of inflammation leads to fibrotic healing, our understanding of the inflammatory pathways implicated in tendinopathy remains poorly understood, meaning successful targeted treatments are lacking. Here, we demonstrate IL-1ß, TNFα and IFN-γ work synergistically to induce greater detrimental consequences for equine tenocytes than when used individually. This includes altering tendon associated and matrix metalloproteinase gene expression and impairing the cells' ability to contract a 3-D collagen gel, a culture technique which more closely resembles the in vivo environment. Moreover, these adverse effects cannot be rescued by direct suppression of IL-1ß using IL-1RA or factors produced by BM-MSCs. Furthermore, we provide evidence that NF-κB, but not JNK, P38 MAPK or STAT 1, is translocated to the nucleus and able to bind to DNA in tenocytes following TNFα and IL-1ß stimulation, suggesting this signalling cascade may be responsible for the adverse downstream consequences of these inflammatory cytokines. We suggest a superior approach for treatment of tendinopathy may therefore be to target specific signalling pathways such as NF-κB.


Assuntos
Células-Tronco Mesenquimais , Tendinopatia , Humanos , Animais , Cavalos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interferon gama/metabolismo , Tenócitos/metabolismo , Tendinopatia/metabolismo , Células Cultivadas
11.
Appl Physiol Nutr Metab ; 48(1): 62-73, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458821

RESUMO

This study aimed to evaluate the effectiveness of omega-3 supplementation with exercise in a collagenase-induced Achilles tendinopathy (AT) rat model. Experimental groups (healthy control (HC), AT, exercise (Ex), omega-3 (W), and Ex+W) were randomly allocated. After a week of adaptation, oral omega-3 was initiated for 8 weeks (5 days/week). The exercise groups performed treadmill running for 30 min/day (5 days/week, 20 m/min, 8 weeks) following one week of adaptation (10 m/min, 15 min/day). Matrix metalloproteinase-13 (MMP-13), interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), and total antioxidant-oxidant status (TAS) levels were determined in serum samples. Tendon samples were obtained for biomechanical, histopathological, and immunohistochemical assessments. Ultimate tensile force, yield force, stiffness values, collagen type-I alpha 1 expression, and serum TAS significantly decreased (P < 0.05) in AT vs. HC. These values and expression significantly increased in the Ex+W group vs. AT. Serum MMP-13, IL-1ß, and TNF-α levels decreased in all treatment groups vs. AT. The most significant decrease was found in the Ex+W group (P < 0.01). Histopathologically, the improvement in degeneration was statistically significant in the Ex+W group (P < 0.05). Immunohistochemically, MMP-13, IL-1ß, TNF-α, and nitric oxide synthase-2 expression was decreased in all treatment groups vs. AT. In conclusion, omega-3 and exercise might be recommended in AT patients.


Assuntos
Tendão do Calcâneo , Tendinopatia , Animais , Ratos , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/patologia , Colagenases/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Tendinopatia/induzido quimicamente , Tendinopatia/metabolismo , Tendinopatia/patologia , Fator de Necrose Tumoral alfa/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Condicionamento Físico Animal
12.
Pathol Res Pract ; 241: 154230, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36463687

RESUMO

It has been reported that tendon-derived stem cells(TDSCs) conduce to the ostosis in tendon diseases, and the molecular mechanism needs to be discussed. To investigate the function and mechanism of LncRNA in tendinopathy. Tendon of tendinopathy patients and health controls were obtained, and sequencing analysis have been performed to detect the significantly expressed genes and non-coding RNAs. Moreover, to further discuss LncRNA AC108925 in tendinopathy, tendinopathy animal models have been established, and the expression of LncRNA AC108925 expression was examined by RT-qPCR methods. Furthermore, hTDSCs have been treated by osteogenic medium, and the modulating function of LncRNA AC108925 on the osteoblast differentiation of hTDSCs have been examined. Sequencing analysis showed that AC108925 a dramatically elevated LncRNA, and results of animal and cells studies confirmed the finding. Knockdown AC108925 inhibited the osteogenic differentiation of osteogenic medium treated TDSCs by decreasing the expression of osteogenic markers. Furthermore, miR-146a-3p is a target of AC108925 in TDSCs, and miR-146a-3p is a negative modulator of osteogenic differentiation of hTDSCs by inhibiting the effects of AC108925 shRNA on osteogenic differentiation of hTDSCs. AC108925 can regulate the osteogenic differentiation of hTDSCs via regulating the miR-146a-3p. Targeting the AC108925/miR-146a-3p axis might be a latent way to treat tendinopathy.


Assuntos
MicroRNAs , RNA Longo não Codificante , Tendinopatia , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Osteogênese/genética , Diferenciação Celular/genética , Células-Tronco/metabolismo , Tendões/metabolismo , Tendinopatia/genética , Tendinopatia/metabolismo , Osteoblastos/metabolismo , Células Cultivadas
13.
Front Endocrinol (Lausanne) ; 13: 1042878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299460

RESUMO

Objective: To establish and validate an intact rotator cuff rat model for exploring the pathophysiological effects of type 2 diabetes on the rotator cuff tendon in vivo. Methods: A total of 45 adult male rats were randomly divided into a control group (n = 9) and type 2 diabetes group (n=36). The rats were sacrificed at 2 weeks (T2DM-2w group, n=9), 4 weeks (T2DM-4w group, n=9), 8 weeks (T2DM-8w group, n=9), and 12 weeks (T2DM-12w group, n=9) after successful modeling of type 2 diabetes. Bilateral shoulder samples were collected for gross observation and measurement, protein expression(enzyme-linked immunosorbent assay,ELISA), histological evaluation, biomechanical testing, and gene expression (real-time quantitative polymerase chain reaction, qRT-PCR). Results: Protein expression showed that the expression of IL-6 and Advanced glycation end products (AGEs)in serum increased in type 2 diabetic group compared with the non-diabetic group. Histologically, collagen fibers in rotator cuff tendons of type 2 diabetic rats were disorganized, ruptured, and with scar hyperplasia, neovascularization, and extracellular matrix disturbances, while Bonar score showed significant and continuously aggravated tendinopathy over 12 weeks. The biomechanical evaluation showed that the ultimate load of rotator cuff tendons in type 2 diabetic rats gradually decreased, and the ultimate load was negatively correlated with AGEs content. Gene expression analysis showed increased expression of genes associated with matrix remodeling (COL-1A1), tendon development (TNC), and fatty infiltration (FABP4) in tendon specimens from the type 2 diabetic group. Conclusion: Persistent type 2 diabetes is associated with the rupture of collagen fiber structure, disturbance in the extracellular matrix, and biomechanical decline of the rotator cuff tendon. The establishment of this new rat model of rotator cuff tendinopathy provides a valuable research basis for studying the cellular and molecular mechanisms of diabetes-induced rotator cuff tendinopathy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Lesões do Manguito Rotador , Tendinopatia , Masculino , Ratos , Animais , Manguito Rotador/metabolismo , Manguito Rotador/patologia , Lesões do Manguito Rotador/metabolismo , Lesões do Manguito Rotador/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Interleucina-6 , Tendinopatia/etiologia , Tendinopatia/metabolismo , Tendinopatia/patologia , Colágeno/metabolismo
14.
In Vitro Cell Dev Biol Anim ; 58(8): 658-668, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36125694

RESUMO

Tendinopathy is a common tendon disorder characterized by pain, swelling, and dysfunction. Current evidence has demonstrated that the depletion of stem cell pool and non-tenogenic differentiation of tendon-derived stem/progenitor cells (TSPCs) might account for the pathogenesis of tendinopathy. FNDC5/Irisin, as a novel exercise-induced myokine, is proved to be involved in the exercise-induced protective effects on musculoskeletal disorders. However, whether irisin can affect TSPCs fate is still unknown. To ascertain the roles of irisin on the proliferation and tenogenic differentiation of TSPCs, rat TSPCs were isolated and incubated with irisin. Cell viability, phenotypic changes, and related signaling pathways were evaluated by CCK-8 assay, colony formation assay, real-time PCR, Western blot, immunofluorescence, and proteasome activity assay. We found that irisin treatment increased the proliferative and colony-forming abilities, and promoted the tenogenic differentiation of TSPCs by upregulating the expression of YAP/TAZ. In conclusion, our work showed for the first time that irisin promotes the proliferation and tenogenic differentiation of rat TSPCs in vitro by activating YAP/TAZ, and the process was associated with a ubiquitin-proteasome proteolytic pathway. In conclusion, irisin and agents targeting YAP/TAZ may be promising therapeutic options for tendinopathy.


Assuntos
Doenças dos Roedores , Tendinopatia , Animais , Diferenciação Celular , Proliferação de Células , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Ratos , Doenças dos Roedores/metabolismo , Doenças dos Roedores/patologia , Células-Tronco , Tendinopatia/metabolismo , Tendinopatia/patologia , Tendões , Ubiquitinas/metabolismo , Ubiquitinas/farmacologia
15.
Acta Biomater ; 152: 440-452, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36108965

RESUMO

Tendinopathy is a common disorder that leads to pain and impaired quality of life. Recent studies revealed that osteogenic differentiation of tendon stem/progenitor cells (TSPCs) played an important role in the pathogenesis of tendon calcification and tendinopathy. In this study, we found that the growth hormone-releasing hormone agonist (GA) can prevent matrix degradation and osteogenic differentiation in TSPCs. As oxidative stress is a key factor in the osteogenic differentiation of TSPCs, we used bovine serum albumin/heparin nanoparticles (BHNPs), which have biocompatibility and drug loading capacity, to scavenge reactive oxygen species (ROS) and achieve sustained release of GA at the site of inflammation. The newly developed BHNPs@GA had a synergetic effect on reducing ROS production in TSPCs. In addition, BHNPs@GA effectively inhibited tendon calcification and promoted collagen formation in a rat model of tendinopathy. Focusing on the ROS underlying the differentiation and dedifferentiation of TSPCs, this work demonstrated that sustained release of GA targeting ROS and ectopic ossification is a practical therapeutic strategy for treating tendinopathy. STATEMENT OF SIGNIFICANCE: Osteogenic differentiation of tendon stem/progenitor cells (TSPCs) plays an important role in the pathogenesis of ectopic calcification in tendinopathy. In this study, we found that growth hormone-releasing hormone agonist (GA) can reduce reactive oxygen species (ROS) production and adjust TSPCs differentiation. Bovine serum albumin/heparin nanoparticles (BHNPs) were developed to encapsulate GA and achieve sustained release of GA at the site of inflammation. The developed compound, BHNPs@GA, with a synergistic effect of inhibiting ROS and thus, can effectively adjust TSPCs differentiation, inhibit tendon calcification, and promote collagen formation in tendinopathy. This study highlighted the role of ROS underlying the differentiation and dedifferentiation of TSPCs in tendinopathy, and findings may help to identify new therapeutic targets and develop novel strategy for treating tendinopathy.


Assuntos
Osteogênese , Células-Tronco , Tendinopatia , Animais , Colágeno/metabolismo , Preparações de Ação Retardada/farmacologia , Hormônio Liberador de Hormônio do Crescimento/agonistas , Heparina/farmacologia , Inflamação/patologia , Qualidade de Vida , Ratos , Espécies Reativas de Oxigênio/metabolismo , Soroalbumina Bovina/farmacologia , Células-Tronco/citologia , Tendinopatia/metabolismo , Tendinopatia/patologia , Tendões/citologia
16.
Mol Biol Cell ; 33(14): ar141, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36129771

RESUMO

Actin is a central mediator between mechanical force and cellular phenotype. In tendons, it is speculated that mechanical stress deprivation regulates gene expression by reducing filamentous (F)-actin. However, the mechanisms regulating tenocyte F-actin remain unclear. Tropomyosins (Tpms) are master regulators of F-actin. There are more than 40 Tpm isoforms, each having the unique capability to stabilize F-actin subpopulations. We investigated F-actin polymerization in stress-deprived tendons and tested the hypothesis that stress fiber-associated Tpm(s) stabilize F-actin to regulate cellular phenotype. Stress deprivation of mouse tail tendon down-regulated tenogenic and up-regulated protease (matrix metalloproteinase-3) mRNA levels. Concomitant with mRNA modulation were increases in G/F-actin, confirming reduced F-actin by tendon stress deprivation. To investigate the molecular regulation of F-actin, we identified that tail, Achilles, and plantaris tendons express three isoforms in common: Tpm1.6, 3.1, and 4.2. Tpm3.1 associates with F-actin in native and primary tenocytes. Tpm3.1 inhibition reduces F-actin, leading to decreases in tenogenic expression, increases in chondrogenic expression, and enhancement of protease expression in mouse and human tenocytes. These expression changes by Tpm3.1 inhibition are consistent with tendinosis progression. A further understanding of F-actin regulation in musculoskeletal cells could lead to new therapeutic interventions to prevent alterations in cellular phenotype during disease progression.


Assuntos
Actinas , Tendinopatia , Humanos , Camundongos , Animais , Actinas/metabolismo , Tendinopatia/metabolismo , Tendões/metabolismo , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fenótipo , Peptídeo Hidrolases/metabolismo , Tropomiosina/metabolismo
17.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955953

RESUMO

Rotator cuff tendinopathy (RCT) is the primary reason for shoulder surgery and its clinical management is still challenging. Hyaluronic acid (HA) has been shown to have anti-inflammatory effects in vitro and in vivo under RCT conditions, characterized by an exaggerated oxidative stress (OS). However, molecular mechanisms underlying HA-related effects are still partially disclosed. With these aims, a cell model of RCT was established by exposing primary human tenocytes to H2O2 for up to 72 h. Four different HAs by molecular weight were administered to measure nitric oxide (NO) and OS, apoptosis, and collagen 1 expression. In parallel, the well-known antioxidant ascorbic acid was administered for comparison. The present study highlights that HAs characterized by a low molecular weight are able to counteract the H2O2-induced OS by decreasing the percentage of apoptotic cells and reversing the activation of caspase 3 and 7. Likewise, NO intracellular levels are comparable to the ones of controls. In parallel, collagen 1 expression was ameliorated by HAs characterized by higher molecular weights compared to AA. These findings confirm that HA plays an antioxidant role comparable to AA depending on the molecular weight, and highlight the molecular mechanisms underlying the HA anti-apoptotic effects.


Assuntos
Caspase 3/metabolismo , Caspase 7/metabolismo , Tendinopatia , Tenócitos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Colágeno Tipo I/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Estresse Oxidativo , Tendinopatia/metabolismo , Tenócitos/metabolismo
18.
Am J Sports Med ; 50(10): 2740-2752, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867349

RESUMO

BACKGROUND: Extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have gained momentum as a treatment for tendinopathy. Multiple studies have demonstrated significant differences in cargo composition between the 2 subtypes of MSC-EVs (ie, exosomes and ectosomes), which may result in different therapeutic effects. However, the effects of the 2 EV subtypes on tendinopathy have not yet been compared. PURPOSE: To compare the effects of adipose stem cell-derived exosomes (ASC-Exos) and ectosomes (ASC-Ectos) on Achilles tendinopathy. STUDY DESIGN: Controlled laboratory study. METHODS: Rats were administered collagenase injections to generate a model of Achilles tendinopathy. A week later, 36 rats were randomly assigned to 3 groups. In each group, Achilles tendons were injected with equal volumes of ASC-Exos, ASC-Ectos, or saline (12 legs/group). The healing outcomes were evaluated by magnetic resonance imaging, histology, immunohistochemistry, transmission electron microscopy, and biomechanical testing at 3 and 5 weeks after collagenase injection. RESULTS: At 3 and 5 weeks, the ASC-Exo group had better histological scores (P = .0036 and P = .0276, respectively), a lower fibril density (P < .0001 and P = .0310, respectively), and a larger collagen diameter (P = .0052 and P < .0001, respectively) than the ASC-Ecto group. At 5 weeks, the expression of collagen type 1 and CD206 in the ASC-Exo group was significantly higher than that in the ASC-Ecto group (P = .0025 and P = .0010, respectively). Regarding biomechanical testing, the ASC-Exo group showed higher failure load (P = .0005), tensile stress (P < .0001), and elastic modulus (P < .0001) than the ASC-Ecto group. CONCLUSION: ASC-Exos had more beneficial effects on tendon repair than ASC-Ectos in a rat model of Achilles tendinopathy. CLINICAL RELEVANCE: Administration of ASC-EVs may have the potential to treat Achilles tendinopathy, and delivery of ASC-Exos could provide additional benefits. It is necessary to compare the healing responses caused by different EV subtypes to further understand their effects on tendinopathy and to aid clinical decision making.


Assuntos
Tendão do Calcâneo , Micropartículas Derivadas de Células , Exossomos , Células-Tronco Mesenquimais , Tendinopatia , Tendão do Calcâneo/patologia , Animais , Micropartículas Derivadas de Células/patologia , Colagenases , Ratos , Tendinopatia/metabolismo
19.
Biomolecules ; 12(8)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892325

RESUMO

The pathophysiology of pain in patients suffering from rotator cuff (RC) tendinopathy or tears has been examined in various ways. Several molecules from tissue samples taken from the subacromial bursa, supraspinatus tendon, glenohumeral joint fluid, and synovium as well as from peripheral blood have been investigated. This article explores these studies, the assessed biomarkers, and groups their results according to the status of tendon integrity (tendinopathy or tear). Through a structured PubMed database search, 9 out of 658 articles were reviewed. Interleukins, mostly IL-1b and its antagonist, IL-1ra, matrix Metalloproteinases (MMPs), the vascular endothelial growth factor (VEGF) and TNF-a are biomarkers directly searched for correlation to pain level. Most studies agree that IL-1b is directly positively correlated to the degree of pain in patients with RC tendinopathy, especially when the examined sample is taken from the subacromial bursa. VEGF, and TNF-a have been related to shoulder pain preoperatively and TNF-a has also been linked with sleep disturbance. Further studies pointing to more biomarkers taken from the subacromial bursa or tendon directly relating to pain degree are warranted.


Assuntos
Manguito Rotador , Tendinopatia , Bolsa Sinovial/metabolismo , Humanos , Dor/metabolismo , Tendinopatia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Am J Sports Med ; 50(9): 2488-2496, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35666137

RESUMO

BACKGROUND: Degenerative rotator cuff tendinopathy (RCT) is associated with the senescence of tendon-derived stem cells (TDSCs). Nonsteroidal anti-inflammatory drugs have been demonstrated to alleviate age-associated inflammation (inflamm-aging)-induced cellular senescence of skeletal stem/progenitor cells. However, whether they can alleviate degenerative RCT through reducing inflamm-aging-related TDSC senescence is still unknown. PURPOSE: To assess whether celecoxib can prevent the inflamm-aging-related cellular senescence of TDSCs. STUDY DESIGN: Controlled laboratory study. METHODS: TDSCs were isolated from degenerative RCT tendons (S-TDSCs) and healthy hamstring tendons (Y-TDSCs), and the cellular senescence of TDSCs was evaluated. Thereafter, the senescent TDSC-conditioned medium (SEN-CM) was collected to culture Y-TDSCs with or without celecoxib. The effects of celecoxib on TDSC senescence were examined by assaying the expression of aging-related markers. Furthermore, the level of the NF-κB pathway was determined by Western blot analysis to explore the underlying mechanism. Its effects on preventing dysfunction of inflamm-aging-induced senescent TDSCs were also determined using multilineage differentiation assay. RESULTS: S-TDSCs showed increased senescence-associated ß-galactosidase activity and enhanced expression of γ-H2AX, p21CIP1A, p16INK4A, and senescence-associated secretory phenotype factors. SEN-CM accelerated the senescence progress of Y-TDSCs, resulting in an increase in senescence markers. To some extent, celecoxib treatment could prevent the detrimental effects of inflamm-aging on Y-TDSCs. The level of the NF-κB pathway was increased in the SEN-CM group but decreased with the use of celecoxib. Moreover, the reduced senescence of TDSCs resulted in preservation of the TDSC tenogenic potential. CONCLUSION: Celecoxib treatment can prevent inflamm-aging-induced TDSC senescence, which holds potential for alleviating the development of degenerative RCT. CLINICAL RELEVANCE: In addition to relieving the symptoms of patients with RCT, treatment with celecoxib, a common nonsteroidal anti-inflammatory drug, may defer the development of RCT and prevent rotator cuff tears by delaying TDSC senescence.


Assuntos
Celecoxib , Senescência Celular , Células-Tronco , Tendinopatia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Celecoxib/metabolismo , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Diferenciação Celular , Senescência Celular/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Manguito Rotador/patologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tendinopatia/tratamento farmacológico , Tendinopatia/metabolismo , Tendões/efeitos dos fármacos , Tendões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...